EEL 3712L LOGIC DESIGN I LAB

Final Exam - Summer, 2019 Instructor: Abdullah Aydeger Student Name:
 PID:

In order to get (partial) credit, please do not leave any step/question empty. Please use minimized schematic in your designs for full credits.

For the programming questions: if your board does not work, send all source code in .tex format to aaydeger@fiu.edu to get partial credits. (Do not expect to earn more than half points available). You are also welcome to run your program as a simulation instead of board implementation if you want to.

Question 1: (45 points)

(a) What is full-adder? Explain in short by showing its truth table. (5 points)
(b) Write the equation for full-adder outputs in terms of inputs and draw the schematic. (5 points)
(c) What is multiplexer? Explain in short by showing the truth table of 4 to 1 MUX. (5 points)
(d) Draw the 4 to 1 MUX as a following box, showing all inputs and outputs. (5 points)

(e) Design and draw one-bit full-adder by using 4 to 1 MUX(es) and any logic gate(s). (10 points)
(f) Implement the schematic on board. Make sure to show your board implementation working in the class to get a grade for this option. If you could not make the design in step ' e ', make full-adder by using schematic in 'b' step. Remember you will lose 5 points if you implement ' b ' instead of ' e '. (15 points)

Question 2: (40 points)

(a) What is the decoder? Explain in short by showing the truth table of 3 to 8 decoder. (5 points)
(b) Draw the 3 to 8 decoder showing all inputs and outputs. (5 points)
(c) Write the equation for each output (D0, D1, ... D7) of the 3 to 8 decoder in terms of inputs. (5 points)
(d) Please implement and draw the following function using 3 to 8 decoder: $f(a, b, c)=\left(a^{\prime}+b\right)\left(b^{\prime}+c\right)(a+c)$ (10 points)
(e) Implement the schematic in 'd' on board. Make sure to show your board implementation working in the class to get a grade for this option. If you could not make the design in step ' d ', you can implement ' c ' step (a regular 3 to 8 decoder). Remember you will lose 5 points if you implement ' c ' instead of ' d '. (15 points) (15 points)

Question 3: (15 + 30 points)

(a) Write the equation for the output of the 4 to 1 MUX in terms of inputs. (5 points)
(b) Write the equation for the output of the 8 to 1 MUX in terms of inputs. (5 points)
(c) Draw the full schematic of 4*1 MUX by using AND, OR, INVERTER gates (whichever needed). (5 points)

Extra Part:

(d) Design and draw 8 to 1 MUX using 4 to 1 MUX(es) and/or 2 to 1 MUX(es). (5 points)
(e) Implement the following function with any size MUX(es) and any logic gates you need. 3 data inputs as (a, b, c) and 2 control inputs as (s0, s1). (10 points)

Hint: (1) Take a look at the equation that you write down for step ' a '. (2) s1 and s0 can be used in different MUXes.
(f) Implement the schematic on board. Make sure to show your board implementation working in the class to get a grade for this option. If you cannot design the function in 'e', you can implement 'b' step (i.e., 8 to 1 MUX), remember you will lose 5 points in this case. (15 points)

Extra Question 4: (20 points)

(a) What is NAND gate? Explain in short by giving 4-input NAND gate truth table. (5 points)
(b) How can we implement 4-input NAND gate using ONLY 2-input NAND gates. (5 points)
(c) Design full adder by using only one decoder of a proper size, and 2-input NAND gates. (10 points)

